Home
Technology of satellite television
Direct broadcast via satellite
Television receive-only
Early history of satellite television
Beginning of the satellite TV industry
TVRO/C-band satellite era
1990s to present of satellite television
History of Freesat
Video on demand
Reception equipment of satellite television
Technical details of satellite television



Ku band


The Ku band is the portion of the electromagnetic spectrum in the microwave range of frequencies from 12 to 18 gigahertz (GHz). The symbol is short for "K-under" (originally German: Kurz-unten), because it is the lower part of the original NATO K band, which was split into three bands (Ku, K, and Ka) because of the presence of the atmospheric water vapor resonance peak at 22.24 GHz, (1.35 cm) which made the center unusable for long range transmission. In radar applications, it ranges from 12 to 18 GHz according to the formal definition of radar frequency band nomenclature in IEEE Standard 521-2002.

Segments in most of North and South America are represented by ITU Region 2 from 11.7 to 12.2 GHz (Local Oscillator Frequency (LOF) 10.75 to 11.25 GHz), allocated to the FSS (fixed satellite service), uplink from 14.0 to 14.5 GHz. There are more than 22 FSS Ku band satellites orbiting over North America, each carrying 12 to 48 transponders, 20 to 120 watts per transponder, and requiring a 0.8-m to 1.5-m antenna for clear reception.

Segments in those regions are represented by ITU Region 1 and they are, the 11.45 to 11.7 and 12.5 to 12.75 GHz bands are allocated to the FSS (fixed satellite service, uplink 14.0 to 14.5 GHz). In Europe Ku band is used from 10.7 to 12.75 GHz (LOF Low 9.750 GHz, LOF High 10.750 GHz) for direct broadcast satellite services such as those carried by the Astra satellites. The 11.7 to 12.5 GHz segment is allocated to the BSS (broadcasting satellite service).

Measurements of rain attenuation in Indonesia have been done for satellite communication links in Padang, Cibinong, Surabaya and Bandung. The DAH Model for rain attenuation prediction is valid for Indonesia, in addition to the ITU model. The DAH model has become an ITU recommendation since 2001 (Recommendation No. ITU-R P.618-7). This model can create a 99.7% available link so that Ku-band can be applied in Indonesia.

Other ITU allocations have been made within the Ku band to the fixed service (microwave towers), radio astronomy service, space research service, mobile service, mobile satellite service, radiolocation service (radar), amateur radio service, and radionavigation. However, not all of these services are actually operating in this band and others are only minor users.

A major attraction of the band over lower frequency microwave bands is that the shorter wavelengths allow sufficient angular resolution to separate the signals of different communication satellites to be achieved with smaller terrestrial parabolic antennas. From the Rayleigh criterion, the diameter of a parabolic dish required to create a radiation pattern with a given angular beamwidth (gain) is proportional to the wavelength, and thus inversely proportional to the frequency. At 12 GHz a 1-meter dish is capable of focusing on one satellite while sufficiently rejecting the signal from another satellite only 2 degrees away. This is important because satellites in FSS (Fixed Satellite Service) service (11.7-12.2 GHz in the U.S.) are only 2 degrees apart. At 4 GHz (C-band) a 3-meter dish is required to achieve this narrow angular resolution. Note the inverse linear correlation between dish size and frequency. For Ku satellites in DBS (Direct Broadcast Satellite) service (12.2-12.7 GHz in the U.S.) dishes much smaller than 1-meter can be used because those satellites are spaced 9 degrees apart. As power levels on both C and Ku band satellites have increased over the years, dish beam-width has become much more critical than gain.