Technology of satellite television
Direct broadcast via satellite
Television receive-only
Early history of satellite television
Beginning of the satellite TV industry
TVRO/C-band satellite era
1990s to present of satellite television
History of Freesat
Video on demand
Reception equipment of satellite television
Technical details of satellite television

Television set

A television set or television receiver, more commonly called a television, TV, TV set, or telly, is a device that combines a tuner, display, and loudspeakers, for the purpose of viewing and hearing television broadcasting through satellites or cables, or viewing and hearing a computer. Introduced in the late 1920s in mechanical form, television sets became a popular consumer product after World War II in electronic form, using cathode ray tube (CRT) technology. The addition of color to broadcast television after 1953 further increased the popularity of television sets in the 1960s, and an outdoor antenna became a common feature of suburban homes. The ubiquitous television set became the display device for the first recorded media in the 1970s, such as Betamax, VHS and later DVD. It has been used as a display device since the first generation of home computers (e.g. Timex Sinclair 1000) and dedicated video game consoles (e.g. Atari) in the 1980s. By the early 2010s, flat-panel television incorporating liquid-crystal display (LCD) technology, especially LED-backlit LCD technology, largely replaced CRT and other display technologies. Modern flat panel TVs are typically capable of high-definition display (720p, 1080i, 1080p) and can also play content from a USB device.

In 1926, Kenjiro Takayanagi demonstrated the first TV system that employed a cathode ray tube (CRT) display, at Hamamatsu Industrial High School in Japan. This was the first working example of a fully electronic television receiver. His research toward creating a production model was halted by the US after Japan lost World War II.

The MOSFET (metal-oxide-semiconductor field-effect transistor, or MOS transistor) was invented by Mohamed M. Atalla and Dawon Kahng at Bell Labs in 1959, and presented in 1960. RCA Laboratories researchers W.M. Austin, J.A. Dean, D.M. Griswold and O.P. Hart in 1966 proposed the use of the MOSFET in television circuits, including RF amplifier, low-level video, chroma and AGC circuits. The MOSFET was later widely adopted for most television circuits.

By 1982, pocket LCD TVs based on AM LCD technology were developed in Japan. The 2.1-inch Epson ET-10 (Epson Elf) was the first color LCD pocket TV, released in 1984. In 1988, a Sharp research team led by engineer T. Nagayasu demonstrated a 14-inch full-color LCD display, which convinced the electronics industry that LCD would eventually replace cathode-ray tube (CRT) as the standard television display technology.

In television sets and computer monitors, the entire front area of the tube is scanned repetitively and systematically in a fixed pattern called a raster. An image is produced by controlling the intensity of each of the three electron beams, one for each additive primary color (red, green, and blue) with a video signal as a reference. In all modern CRT monitors and televisions, the beams are bent by magnetic deflection, a varying magnetic field generated by coils and driven by electronic circuits around the neck of the tube, although electrostatic deflection is commonly used in oscilloscopes, a type of diagnostic instrument.

There are two main families of OLED: those based on small molecules and those employing polymers. Adding mobile ions to an OLED creates a light-emitting electrochemical cell or LEC, which has a slightly different mode of operation. OLED displays can use either passive-matrix (PMOLED) or active-matrix addressing schemes. Active-matrix OLEDs (AMOLED) require a thin-film transistor backplane to switch each individual pixel on or off, but allow for higher resolution and larger display sizes.